2.5 Limits involving "*e***"**

Definition 2.5.1.

$$
e = \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x.
$$

e is the base for natural \log , $\log_e x = \ln x$.

$$
e = 2.71828\dots
$$

Remark. 1. Note that

$$
e := \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x \underbrace{\mathcal{A}}_{\forall} \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1! \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1 \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1 \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1 \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1 \underbrace{\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x}_{\forall \varphi} = 1 \
$$

2. Motivation for defining *e* this wa will be clear later when we learn about differentiation.

Example 2.5.1. Evaluate

$$
\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^x.
$$

Solution.

$$
\lim_{x \to +\infty} \left(1 - \frac{1}{x}\right)^x = \lim_{\substack{x \to +\infty \\ y \to -\infty}} \left[\left(1 + \frac{1}{\left(-x\right)}\right)^{(-x)} \right]^{-1} \qquad (\text{set } -x = y)
$$

$$
= \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y}\right)^y \right]^{-1} \qquad \text{Using } \left(1 + \frac{1}{y}\right)^y
$$

$$
= e^{-1} \qquad \text{As } y \to \infty
$$

Exercise 2.5.1. Evaluate $\lim_{x \to +\infty}$ \overline{a} $1 + \frac{2}{ }$ *x* \setminus^{2x} e^4 . $y = \frac{\gamma}{2}$ $x \rightarrow \infty$ $y \rightarrow \infty$ $(1 + \frac{1}{x_2})$ 4g = 2x $\lim_{y\to\infty} \left(1+\frac{1}{y}\right)^{y} = \lim_{y\to\infty} \left(\left(1+\frac{1}{y}\right)^{y}\right)$ $\sqrt{2}$

⌅

$$
= \left[\lim_{y \to \infty} (H^{\pm}y)^{3}\right]^{4} \approx
$$

\n
$$
= e^{4}
$$

\n
$$
u = (1 + \frac{1}{2})^{8}
$$

\n
$$
u = 1 + \frac{1}{2}
$$

\n
$$
u = 1
$$

\n<

Chapter 3: Continuity

Learning Objectives:

- (1) Explore the concept of continuity and examine the continuity of several functions.
- (2) Investigate the intermediate value property.

3.1 Continuity

Definition 3.1.1. A function *f* is **continuous** at $x = x_0$ if $\lim_{x \to x_0} f(x) = f(x_0)$. It means all three of these conditions are satisfied: \overline{a} .

- 1. $f(x_0)$ is defined.
	- 2. $\lim_{x \to x_0} f(x)$ exists.
- 3. They are equal.

If some of (1)-(3) are not satisfied, then $f(x)$ is discontinuous at x_0 .

If $f(x)$ is continuous at every point in the domain, $f(x)$ is called a continuous function.

Informally, a function $f(x)$ is continuous at $x = x_0$ if the curve of $f(x)$ does not break up at *x*0. A continuous function is one whose graph has no holes or gaps.

Example 3.1.1. Show that $f(x) = x^3 - 1$ is continuous at $x = 1$. men

Solution.

$$
f(1) = 0.
$$

$$
\lim_{x \to 1} f(x) = 1^3 - 1 = 0 = f(1)
$$

(i.e., limit exists and is equal to $f(1)$.)

In fact by chapter ² any polynomial function is ^a continuous function

Example 3.1.2. Decide whether the function

$$
f(x) = \begin{cases} x^3 - 1, & x \neq 1, \\ 1, & x = 1. \end{cases}
$$

is continuous at $x = 1$.

Solution. Since

$$
\lim_{x \to 1} f(x) = 0 \neq f(1),
$$

 $f(x)$ is discontinuous at $x = 1$.

Example 3.1.3. Discuss the continuity of $f(x) = \frac{1}{x^2}$

Solution. $f(x)$ is defined everywhere except at $x = 0$, and $\lim_{x \to c} \frac{1}{x} = \frac{1}{c} \forall c \neq 0$ by the first propositions of Chapter 2. So $f(x)$ is continuous for all $x \neq 0$.

Example 3.1.4. Piecewise linear functions (e.g. step functions, the ceil/floor function, $f(x) = |x|$; piecewise continuous functions.

$$
f(x) = Lx1
$$
\n
$$
i \leq \text{continuous}
$$
\n
$$
u \mid \text{mean} \leq \text{wise}
$$
\n
$$
u \mid \text{sum} \leq u
$$

Proposition 3.1.1. (**Properties of continuity**)

- 1. Suppose $f(x)$ and $g(x)$ are continuous at $x = x_0$. It follows from Proposition 2 in Chapter 2 that:
	- (a) $f(x) + g(x)$, $f(x) g(x)$, $f(x)g(x)$ are continuous at $x = x_0$.
	- (b) If $g(x_0) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at $x = x_0$.
- 2. It follows from Proposition 3 in Chapter 2 that: If $g(x)$ is continuous at $x = x_0$ and *f*(*x*) is continuous at $x = g(x_0)$. Then $(f \circ g)(x)$, i.e., $f(g(x))$ is continuous at $x = x_0$. In fact $\lim_{x \to x_0} f(g(x)) = \lim_{u \to g(x_0)} f(u) = f(g(x_0)).$
- 3. x^a , a^x , $\log_a x$ and trig functions are all continuous functions in the domain. As a consequence, their $+$, $-$, \times , \div , \circ are all continuous in the domain.

Example 3.1.5.

1. If $p(x)$ and $q(x)$ are polynomials, then

$$
\lim_{x \to c} p(x) = p(c)
$$

and

$$
\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)} \text{ if } q(c) \neq 0.
$$

So a polynomial or a rational function is continuous wherever it is defined (i.e. $q(c) \neq$ 0).

- 2. $f(x) = \frac{x-1}{x+1}$ is continuous at $x = 2$.
- 3. $f(x) = \frac{x^2 1}{x + 1}$ is defined everywhere except at $x = -1$, so it is continuous everywhere except at $x \neq -1$.
- 4. $q(x) = \ln \sqrt{x^2 + 1}$ is continuous on R.

Example 3.1.6. Discuss the continuity of the piecewise function:

$$
f(x) = \begin{cases} x+1 & \text{if } x \le 1, \\ 2x^2 & \text{if } x > 1. \end{cases}
$$

Solution. For $x < 1$, $f(x) = x + 1$ is continuous on $(-\infty, 1)$;

For
$$
x > 1
$$
, $f(x) = 2x^2$ is continuous on $(1, +\infty)$;
\nAt $x = 1$, $f(1) = 1 + 1 = 2$.
\n
$$
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 1) = 1 + 1 = 2.
$$
\n
$$
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2x^2 = 2 \cdot 1^2 = 2.
$$

Because the left hand limit and the right hand limit exist and equal. So \lim $x \rightarrow 1$ $f(x)=2=f(1).$ Therefore $f(x)$ is continuous at all x .

$$
sof(x)
$$
 is also combinations at $x \to 0$
and = $f(0)$

so f is ^a continuousfundson

Chapter 3: Continuity 3-6

Example 3.1.9. For what value of *A* such that the following function is continuous at all *x*?

$$
f(x) = \begin{cases} x^2 + x - 1 & \text{if } x \le 0, \\ x + A & \text{if } x > 0. \end{cases}
$$

Solution. Because $x^2 + x - 1$ and $x + A$ are polynomials, they are continuous everywhere except possibly at $x = 0$. Also $f(0) = 0^2 + 0 - 1 = -1$.

$$
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^2 + x - 1) = -1
$$

and

$$
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + A) = A.
$$

For lim $x \rightarrow 0$ $f(x)$ to exist, the left hand limit and the right hand limit must be equal. So we must have $A = -1$. In which case

$$
\lim_{x \to 0} f(x) = -1 = f(0).
$$

This means that $f(x)$ is continuous for all *x* only when $A = -1$.

Proposition 3.1.2. $f(x)$ is continuous at $x = c$ if and only if

$$
\lim_{h \to 0} f(c+h) = f(c).
$$

Proof. Let $h = x - c$. Then $h \to 0$ as $x \to c$.

$$
\lim_{x \to c} f(x) = \lim_{h \to 0} f(c+h).
$$

 \Box

Exercise 3.1.1*.*

- 1. Show that $\sqrt[3]{x^3 + 1}$ is a continuous function.
- 2. Show that *x* + 1 $x - 1$ $\left|$ is a continuous function on $\mathbb{R}\backslash\{1\}.$
- 3. Let

$$
f(x) = \begin{cases} x^2 - 1, & x \le 0, \\ x + a, & x > 0. \end{cases}
$$

Find *a* such that $f(x)$ is continuous at 0. (Ans: $a = -1$)

Example 3.1.10 (Using continuity to compute limits). $\lim_{x \to \infty} \sin \left(\frac{1}{x} \right)$ $) =?$

3.2 Continuity on [*a, b*]

Definition 3.2.1. Let $f : (a, b) \to \mathbb{R}$ be a function. Then f is said to be continuous on (a, b) if it is continuous at every point on (*a, b*).

Next, let's assume $f : [a, b] \to \mathbb{R}$ be a function. What's the meaning of f being continuous at one of the end point *a*? $\lim_{x \to a} f(x)$ does not make sense because *f* is not defined on $x < a$. So to define the continuity at $x = a$, we only concern about the value $x > a$. Similarly, to discuss about the continuity at $x = b$, we only concern about the value $x < b$.

Definition 3.2.2. Let $f : [a, b] \rightarrow \mathbb{R}$ be a function. Then *f* is said to be continuous at *a* if

$$
\lim_{x \to a^+} f(x) = f(a).
$$

f is said to be continuous at *b* if

$$
\lim_{x \to b^{-}} f(x) = f(b).
$$

Then *f* is said to be a continuous function on [*a, b*] if *f* is continuous on $a \le x \le b$.