2.5 Limits involving "e"

Definition 2.5.1.

$$e = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x.$$

e is the base for natural $\log, \log_e x = \ln x.$

$e = 2.71828 \dots$						
x	-1000	-100	-10	10	100	1000
$\left(1+\frac{1}{x}\right)^x$	2.71964	2.73200	2.86797	2.59374	2.70481	2.71692

Remark. 1. Note that

$$e := \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \neq \left(\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = 1!$$

2. Motivation for defining e this wa will be clear later when we learn about differentiation.

Example 2.5.1. Evaluate

7

Solution.

$$\lim_{x \to +\infty} \left(1 - \frac{1}{x} \right)^x = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{(-x)} \right)^{(-x)} \right]^{-1} \quad (\text{ set } -x = y)$$
$$= \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{x \to +\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \right]^{+1} \quad \bigcup_{y \to -\infty} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y \right]^{+1} \left[\lim_{y \to -\infty} \left(1 + \frac{1}{y} \right)^y$$

Exercise 2.5.1. Evaluate $\lim_{x \to +\infty} \left(1 + \left(\frac{2}{x}\right)^{2x} = e^4$. $\begin{pmatrix} y = \frac{1}{2} \\ y = 2x \\ y = 2x \\ y = \frac{1}{2} \\ y = \frac{1}$

$$= \left[\lim_{y \to \infty} (\mu + t_0)^{y} \right]^{\frac{y}{y}} \int_{0}^{\frac{y}{y}} \int_$$

Chapter 3: Continuity

Learning Objectives:

(1) Explore the concept of continuity and examine the continuity of several functions.

(2) Investigate the intermediate value property.

3.1 Continuity

Definition 3.1.1. A function f is continuous at $x = x_0$ if $\lim_{x \to x_0} f(x) = f(x_0)$. It means all three of these conditions are satisfied:

- 1. $f(x_0)$ is defined.
- 2. $\lim_{x \to x_0} f(x)$ exists.
- 3. They are equal.

If some of (1)-(3) are not satisfied, then f(x) is discontinuous at x_0 .

If f(x) is continuous at every point in the domain, f(x) is called a continuous function.

Informally, a function f(x) is continuous at $x = x_0$ if the curve of f(x) does not break up at x_0 . A continuous function is one whose graph has no holes or gaps.

Example 3.1.1. Show that $f(x) = x^3 - 1$ is continuous at x = 1.

Solution.

$$f(1) = 0.$$

$$\lim_{x \to 1} f(x) = 1^3 - 1 = 0 = f(1)$$

(i.e., limit exists and is equal to f(1).)

Example 3.1.2. Decide whether the function

$$f(x) = \begin{cases} x^3 - 1, & x \neq 1, \\ 1, & x = 1. \end{cases}$$

is continuous at x = 1.

Solution. Since

$$\lim_{x \to 1} f(x) = 0 \neq f(1),$$

f(x) is discontinuous at x = 1.

Example 3.1.3. Discuss the continuity of $f(x) = \frac{1}{x}$.

Solution. f(x) is defined everywhere except at x = 0, and $\lim_{x\to c} \frac{1}{x} = \frac{1}{c} \forall c \neq 0$ by the first propositions of Chapter 2. So f(x) is continuous for all $x \neq 0$.

Example 3.1.4. Piecewise linear functions (e.g. step functions, the ceil/floor function, f(x) = |x|); piecewise continuous functions.

$$f(x) = L \times J$$
is continuons
when $x \neq integer$.
disconfinuons
when x is
an integer.

$$e.s, at x = J$$

$$lim f(x) = 0 \neq lim f(x) = I = f(i) = I$$

$$x \gg J \neq lim f(x) = I = f(i) = I$$

Proposition 3.1.1. (Properties of continuity)

- 1. Suppose f(x) and g(x) are continuous at $x = x_0$. It follows from Proposition 2 in Chapter 2 that:
 - (a) f(x) + g(x), f(x) g(x), f(x)g(x) are continuous at $x = x_0$.
 - (b) If $g(x_0) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at $x = x_0$.
- 2. It follows from Proposition 3 in Chapter 2 that: If g(x) is continuous at $x = x_0$ and f(x) is continuous at $x = g(x_0)$. Then $(f \circ g)(x)$, i.e., f(g(x)) is continuous at $x = x_0$. In fact $\lim_{x \to x_0} f(g(x)) = \lim_{u \to g(x_0)} f(u) = f(g(x_0))$.
- 3. $x^a, a^x, \log_a x$ and trig functions are all continuous functions in the domain. As a consequence, their $+, -, \times, \div, \circ$ are all continuous in the domain.

Example 3.1.5.

1. If p(x) and q(x) are polynomials, then

$$\lim_{x \to c} p(x) = p(c)$$

and

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)} \text{ if } q(c) \neq 0.$$

So a polynomial or a rational function is continuous wherever it is defined (i.e. $q(c) \neq 0$).

- 2. $f(x) = \frac{x-1}{x+1}$ is continuous at x = 2.
- 3. $f(x) = \frac{x^2 1}{x + 1}$ is defined everywhere except at x = -1, so it is continuous everywhere except at $x \neq -1$.
- 4. $g(x) = \ln \sqrt{x^2 + 1}$ is continuous on \mathbb{R} .

Example 3.1.6. Discuss the continuity of the piecewise function:

$$f(x) = \begin{cases} x+1 & \text{if } x \le 1, \\ 2x^2 & \text{if } x > 1. \end{cases}$$

Solution. For x < 1, f(x) = x + 1 is continuous on $(-\infty, 1)$;

For
$$x > 1$$
, $f(x) = 2x^2$ is continuous on $(1, +\infty)$;
At $x = 1$, $f(1) = 1 + 1 = 2$.
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 1) = 1 + 1 = 2.$$
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2x^2 = 2 \cdot 1^2 = 2.$$

Because the left hand limit and the right hand limit exist and equal. So $\lim_{x \to 1} f(x) = 2 = f(1)$. Therefore f(x) is continuous at all x.

so
$$f(x)$$
 is also continuous at $x=0$ and $= f(0)$

Chapter 3: Continuity

Example 3.1.9. For what value of *A* such that the following function is continuous at all *x*?

$$f(x) = \begin{cases} x^2 + x - 1 & \text{if } x \le 0, \\ x + A & \text{if } x > 0. \end{cases}$$

Solution. Because $x^2 + x - 1$ and x + A are polynomials, they are continuous everywhere except possibly at x = 0. Also $f(0) = 0^2 + 0 - 1 = -1$.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2} + x - 1) = -1$$

and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+A) = A$$

For $\lim_{x\to 0} f(x)$ to exist, the left hand limit and the right hand limit must be equal. So we must have A = -1. In which case

$$\lim_{x \to 0} f(x) = -1 = f(0).$$

This means that f(x) is continuous for all x only when A = -1.

3-6

Proposition 3.1.2. f(x) is continuous at x = c if and only if

$$\lim_{h \to 0} f(c+h) = f(c).$$

Proof. Let h = x - c. Then $h \to 0$ as $x \to c$.

$$\lim_{x \to c} f(x) = \lim_{h \to 0} f(c+h).$$

Exercise 3.1.1.

- 1. Show that $\sqrt[3]{x^3+1}$ is a continuous function.
- 2. Show that $\left|\frac{x+1}{x-1}\right|$ is a continuous function on $\mathbb{R}\setminus\{1\}$.
- 3. Let

$$f(x) = \begin{cases} x^2 - 1, & x \le 0, \\ x + a, & x > 0. \end{cases}$$

Find a such that f(x) is continuous at 0. (Ans: a = -1)

Example 3.1.10 (Using continuity to compute limits). $\lim_{x\to\infty} \sin\left(\frac{1}{x}\right) = ?$

3.2 Continuity on [a, b]

Definition 3.2.1. Let $f : (a, b) \to \mathbb{R}$ be a function. Then f is said to be continuous on (a, b) if it is continuous at every point on (a, b).

Next, let's assume $f : [a, b] \to \mathbb{R}$ be a function. What's the meaning of f being continuous at one of the end point a? $\lim_{x \to a} f(x)$ does not make sense because f is not defined on x < a. So to define the continuity at x = a, we only concern about the value x > a. Similarly, to discuss about the continuity at x = b, we only concern about the value x < b.

Definition 3.2.2. Let $f : [a, b] \to \mathbb{R}$ be a function. Then *f* is said to be continuous at *a* if

$$\lim_{x \to a^+} f(x) = f(a).$$

f is said to be continuous at b if

$$\lim_{x \to b^-} f(x) = f(b).$$

Then *f* is said to be a continuous function on [a, b] if *f* is continuous on $a \le x \le b$.